旧代码学习上传记录-天池-零基础入门NLP_-_新闻文本分类
搜寻到以前做过的旧代码操作记录,零基础入门nlp,用了机器学习的算法进行预测,本次给出的数据集格式是csv格式,读取文件的代码是
1 2
| df = pd.read_csv(file_path, sep='\t')
|
包含了label和text,其中官网给出的数据为了避免被人为标记已经做了处理,其中数据提取出来如下所示
然后本次算法是选取了随机森林算法等多种算法进行训练预测,由于数据集涉及到20w条,本电脑内存不足,先把训练集分割成10个,取其中一个进行训练,
以下是拆分的代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| import pandas as pd def split_csv_file(filename, num_files): df = pd.read_csv(filename) rows_per_file = len(df) if len(df) % num_files != 0: rows_per_file += 1 for i in range(num_files): start_row = i * rows_per_file end_row = min(start_row + rows_per_file, len(df)) df_subset = df.iloc[start_row:end_row] output_filename = f'split_{i + 1}.csv' df_subset.to_csv(output_filename, index=False) print(f'Saved {output_filename}') split_csv_file('./train_set.csv', 10)
|
随机森林算法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
| import pandas as pd import torch from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics import accuracy_score from torch.utils.data import Dataset, DataLoader from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder import pandas as pd df = pd.read_csv('./split_1.csv', sep='\t') print(df.head(3)) df = pd.DataFrame(df) X_train, X_test, y_train, y_test = train_test_split(df['text'], df['label'], test_size=0.3, random_state=42) vectorizer = CountVectorizer() X_train = vectorizer.fit_transform(X_train) X_test = vectorizer.transform(X_test) classifier = RandomForestClassifier() classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(f'Accuracy: {accuracy:.2f}')
|